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ABSTRACT

The key to the success of the DARPA-sponsored Polymorphous Computing Architectures (PCA)
program is the proper development of the morphing concept. One of MIT Lincoln Laboratory's
contributions towards this effort is the Integrated Radar-Tracker (IRT) application. The initial IRT consists
of a Ground Moving Target Indicator (GMTI) radar and a kinematic tracker (KT). As GMTI has received
more community interest, it is used in this first document as a background for identification and discussion
of promising computational issues which may be addressed by morphing. This document examines three
areas from GMTI: data dependent load balancing; changing from streaming to threaded computation; and
changing parameter sets.
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1. INTRODUCTION

The key to the success of the DARPA-sponsored Polymorphous Computing Architectures (PCA)
program is the proper development of the morphing concept. One of MIT Lincoln Laboratory's
contributions towards this effort is the Integrated Radar-Tracker (IRT) application. The initial IRT consists
of a Ground Moving Target Indicator (GMTI) radar and a kinematic tracker (KT). As GMTI has received
more community interest, it is used in this first document as a background for identification and discussion
of promising computational issues which may be addressed by morphing. This document examines three
areas from GMTI: data dependent load balancing; changing from streaming to threaded computation; and

changing parameter sets.

1.1 GROUND MOVING TARGET INDICATOR RADAR OVERVIEW

The basic deliverable of the IRT application consists of two distinct pieces, a Ground Moving Target
Indicator radar and a kinematic tracker. Either piece may be run separately or combined by feeding GMTI
output to KT as input. Complete descriptions of GMTI and KT may be found in [3] and [2], respectively. A
very high level overview of GMTI will be offered in this section.

1.1.1 GMTI Processing Stream

The GMTI implementation used for the IRT is composed of the seven stages shown in Figure 1

below. Time Delay & Equalization and Pulse Compression are FIR filters. Adaptive Beamforming and
Space-Time Adaptive Processing (STAP) consist of QRiLQ, back/forward substitutions, and matrix
multiplication. Doppler Filtering is essentially a Fast Fourier Transform (FFT). Detection consists of a
Constant False-Alarm Rate (CFAR) thresholding operation and three-dimensional grouping (removing
duplicate detections by only considering local maxima). Estimation incorporates spline interpolation and
maximum likelihood estimation.



Weightsts

Figure 1. GMTI proFessing chain.

1.1.2 GMTI Data Flow

The data cube size is changed by each stage. In Table 1, we describe shortened names for the data
size parameters; these names are used in the data flow description in Table 2. The axes of the data cube are
illustrated by Figure 2. The target list size is obviously dependent upon the number of targets detected, so
its size cannot be known a priori.
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TABLE I
GMTI Parameter Descriptions

Nrg Number of range gates

Npc Number of taps used in Pulse Compression filter

Nch Number of channels (from antenna)

Nbm Number of beams (from Adaptive Beamform)

Ncnb Number of clutter-nulled beams (from STAP)

Npri Number of pulses sent in one Pulse Repetition Interval (PRI)

Ndop Number of Doppler bins

Nstag Number of Doppler staggers calculated

Ntgts Number of targets detected

TgtRptSize Size of one target report

TABLE 2

GMTI Data Sizes

1 Time Delay & Nrg x Nch x Npri Nrg x Nch x Npri
Equalization

2 Adaptive Nrg x Nch x Npri Nrg x Nbm x Npri
Beamform

3 Pulse Nrg x Nbm x Npri (Nrg+Npc-1) x Nbm x Npri
Compression

4 Doppler Filtering (Nrg+Npc-1) x Nbm x Npri Nstag x (Nrg+Npc-1) x Nbm x Ndop
5 STAP Nstag x (Nrg+Npc-1) x Nbm x Ndop (Nrg+Npc-1) x Ncnb x Ndop

6 Detection (Nrg+Npc-1) x Ncnb x Ndop Ntgts x TgtRptSize

7 Estimation Ntgts x TgtRptSize, Ntgts x TgtRptSize
subset of STAP output
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Nrg

(Nrg + Npc - 1)

Nch 10oP

Nbm
Ncnb Nstag indicates the number of data cubes produced

by Doppler Filtering

Figure 2. GMTI data cube illustration.

1.2 MAPPING CONSIDERATIONS

A real-time system is given a latency and a throughput requirement. Latency indicates the acceptable
time lag between the data input and the result output. It may be specified as a number of coherent
processing intervals (CPIs)1 , or sometimes by a certain absolute time. Throughput indicates the rate at
which the sensor will receive data and which the system must keep up with. It may be specified by the
input data cube size and the time required for the antenna to collect it. Generally an application will be
broken into pipelined stages to increase the throughput capabilities; however, the latency requirement
forces a hard time limit to the processing, causing limits to be decided upon and imposed for each stage.
This trade-off is a major system design consideration.

A CPI is the amount of time the radar antenna requires to send and receive all pulse information for a given data cube.
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1.3 MORPHING MOTIVATION

The purpose of morphing is to increase the system capabilities in a significant way. In this document,
we consider that three basic types of morph changes may take place: data dependent load balancing;
changing from streaming to threaded computation; and changing parameter sets. These three types of
morph changes were not chosen to necessarily fit within the taxonomies of morph types as shown in Figure
2 of [1]. These morph changes are considered under the control of the application (morph types 2 and 3)

for the purposes of this document, but the same mechanisms used for the application API should be
suitable for system and compiler level morphing as well. This section discusses the motivating reasons for
the three morph changes discussed in this document.

The problem of data dependent load balancing is seen in GMTI through the need to perform

operations on detected targets. This particular morph change is relevant for any parallel run of GMTI
which might be performed. The problem occurs because computation will be parallelized across known
axes of the data cube prior to the completion of CFAR (first portion of Detection stage). After CFAR,
target detections will be spread across computing elements in an unknown way. In many systems, the radar
will drop targets it is unable to process within its real-time limit. This leaves the choice between excess
redundancy for CFAR parallelization, manually formulating a load balancing scheme, or accepting a larger
target drop rate. The morph mechanism has the potential to provide an elegant solution to this problem by
determining and performing appropriate resource allocation at run-time. This would most likely be
considered as morph type 2 [ 1 ]. Proposals for how to indicate to the system that a morph type 0 [ 1 ] would
be acceptable in one portion of the code, but not previous portions, would also be useful.

The change between streaming and threaded processing can cause problems due to the paradigm

differences between the way we deal with each. While this boundary would generally be thought of as
laying between the radar and the tracker, there is a boundary within GMTI which may be examined. The

area in question is immediately after CFAR within the Detection stage. The CFAR detection operation has
an input data cube of known size ((Nrg+Npc-1) x Ncnb x Ndop as from Table 2) but outputs a target list
with a length dependent upon the content of the input data. For this reason, CFAR would be processed in a
"streaming" way and three-dimensional grouping and Estimation would then be performed as "threaded"

operations. This morph makes assumptions causing this morph to be of type 3a [I]. Once again, system or
compiler directives to make this a morph type of 1 a or 4a [ 1] could also be investigated, and a combination
of this morph change with the data dependent load balancing example could be used to investigate morph
types 3b and lb [1].

The final morph change for GMTI is both the most basic and the most complicated, the change of
system parameters. A radar may have many missions to perform. The change may be very obvious as in a
change between surveillance and target tracking. There may also be more subtle changes desirable to
adjust the area and resolution of the radar scan. A PCA system must be able to adapt to the changing

5



resource demands associated with these changes. This morph change was designed to ideally be of morph
type 3a, though implementations may end up using morph type 3b [1]. Once again, this same scenario
could be used to investigate appropriate system and compiler directives for intelligent morphing of types
la, lb, or4a [1].

6



2. MORPH CHANGE A: TARGET NUMBER AND DISTRIBUTION CHANGE

While the dynamic load balancing problem occurs in any detection system, an example stressful
scenario would be airborne surveillance of a large, active area (such as a battlefield) where targets would
be expected to converge, disperse, and move in all manner of patterns. Consider that the full ground extent
to observe might occupy more than one scan in area, so separate data cubes would be collected for each
area. Some scans would contain few targets, some would have many. Some scans may contain all targets
grouped in one area, others may have multiple dense groups, and yet others may have widely dispersed
targets. A simplified idea of what this might look like is illustrated in Figure 3 below.

0

Figure 3. Target number and distribution morph change sample view. Bold lines indicate separate data cube areas.
Thin lines indicate data slices for CFAR. Dots indicate targets.

To describe a quantitative example, we consider the execution of the Detection and Estimation
stages, and constrain the mapping of the stages as follows. CFAR (first half of stage 6) is performed by all
processing elements, and is assumed to take time C. Three dimensional grouping and Estimation (second
half of stage 6 and stage 7) are assumed to take time P for a single processing element to estimate a single
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target (assume for ease of analysis that each real target has an equal number of false targets detected with it
to be eliminated by grouping). The overall latency requirement for this portion of the application is C +
25P; that is, there is enough time to detect all targets and to have a single processing element fully process
25 of them. We process four data cubes corresponding to four different areas and parallelize CFAR
processing by azimuth for each cube. The distribution of targets in azimuth in each cube is shown in
Table 3.

TABLE 3

Target Distribution Example

Data cube 1 25 25 25 25
Data cube 2 33 33 33 1

Data cube 3 49 49 1 1
Data cube 4 97 1 1 1

A system at this point may choose between two options. The first option is to consider that each
processing element can decide on its own which targets are most important and which must be dropped.
The second option is to perform a load balancing operation to allow more targets to be detected. There are
two measures of success which may then be used. The first measure is the percentage of targets detected.
The second measure is the cost in processing elements used. For example, consider four example systems
as shown in Table 4. These systems would score as shown in Table 5.

TABLE 4

Example System Descriptions for Load Balancing

1 Proc One processing element is used, no load balancing is attempted

no bal
4 Proc Four processing elements are used, no load balancing is attempted

no bal
16 Proc Sixteen processing elements are used as four tightly coupled quads. Load

quad bal balancing is performed within the quad but not externally (or alternately
the data to the next level of division is evenly distributed)

4 Proc Four processing element are used, negligible latency load balancing is

global bal performed
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TABLE 5

Success Metrics for Example Systems

Data cube 1 detection 25% 100% 100% 100%
percentage

Data cube 2 detection 25% 76% 100% 100%
percentage

Data cube 3 detection 25% 52% 100% 100%
percentage

Data cube 4 detection 25% 28% 100% 100%
percentage

Processor Cost 1 4 16 4

9



3. MORPH CHANGE B: STREAM- TO THREAD-BASED COMPUTATION

Before discussion on morphing between stream- and thread-based computation may take place, a
few words need to be said by what exactly these terms will be defined to mean. Computation in general
takes input data and produces output data. The concept of a streaming computation is one which may
accept simple numerical inputs (scalars to N-dimensional arrays) which may be continuously fed in to the
machine and have processed data continuously flow out. The concept of threaded computation is where a
potentially more complicated set of data (a structure containing potentially different data types) will be
passed as input, and output is also passed in one discrete portion when the entire operation is finished.

Using these definitions, the boundary between streaming and threaded computation falls within the
Detection stage (after CFAR and before grouping). To demonstrate a stream-to-thread morph change, we
use a scenario requiring 118 Mflop per data cube, with a CPI of 3.4 milliseconds, a latency requirement of
15 milliseconds, and a computational balance as shown in Table 6.

TABLE 6
Stream to Thread Example Computational Balance

1 Time Delay & Equalization 25.121%

2 Adaptive Beamforming 20.640%
3 Pulse Compression 18.884%

4 Doppler Filtering 6.469%

5a STAP weight computation 14.930%
5b STAP weight application 7.058%

6 Detection 0.257%

7 Estimation 6.640%

Mapping this processing onto four, balanced, pipelined stages would have the first stage performing
Time Delay & Equalization (1); the second stage would perform Adaptive Beamforming (2); the third
would perform Pulse Compression and Doppler Filtering (3 & 4); and the final would contain STAP
weight computation, STAP weight application, Detection, and Estimation (5-7). The percentage of time
taken by STAP weight application, Detection, and Estimation is slightly less than that for STAP weight
computation (13.955% vs. 14.930%), so a logical mapping of the fourth stage would be to give half of this
stage's resources to weight computation (Stage 5a) and the other half to the other kernels (Stages 5b-7). To
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avoid incurring excess communication costs, the mapping to show this morph change would allocate
resources to STAP weight application, Detection, and Estimation based upon time as opposed to space (see
Figure 4). The top row of boxes represents the data processed by the first half of the resources (Resource
Set A), which always performs STAP weight computation (5a). The bottom row of boxes represents the
data processed by the second half of the resources (Resource Set B), which will alternate between
performing STAP weight application (5b) and Detection and Estimation (6 & 7).

_ _Resource Set A

SUesousce t B
I I I

*CPii I*CPI2 *CPI3 NCIPI 4

STAP weight computation (5a) STAP weight application (5b) D etection and Estimation (6 & 7)

Figure 4. Time-shared resource mappingfor STAP Detection, and Estimation.

To state this in words, STAP weight computation for the current CPI will be performed on Resource
Set A at all times. During the first half of the CPI, the Detection and Estimation processing for the previous
CPI will be performed on Resource Set B (which will roughly use up the time past four CPIs in the latency
requirement). It will then switch to perform STAP weight application for the current CPI during the second
half of the CPI. This will have Resource Set B performing five types of computations, two streaming
(matrix multiplication and CFAR) and three threaded (three-dimensional grouping, spline interpolation,
and Maximum Likelihood Estimation). The primary point is to investigate if there are any significant costs
for the target architecture to execute a mix of streaming and threaded kernels, compared to executing
optimal configurations for two kernels of the same type. As no actual change in morph state takes place in
Resource Set A, there is no need to consider its implementation on PCA hardware to investigate this morph
change.
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4. MORPH CHANGE C: PARAMETER SET CHANGE

Parameter changes can be useful in most systems. As a convenient example we consider a space-
based radar (SBR). It would be desirable for such a system to have modes for examining different types of
ground situations. Table 7 below gives relevant parameters for a few example GMTI morph states and
Table 8 gives system performance information.

TABLE 7
GMTI Morph State Parameters

- - - -
PRF 2,000 1,500 3,000

Fsampling 5,000,000 3,500,000 5,000,000

Nrg 2,250 2,100 1,500

Npri 17 65 65

Npc 250 234 167
Ndop 16 64 64

MaxTargets 100 25 375

Nfam 10 10 20

TABLE 8

GMTI Morph State Requirements

Stream Flops (Mflop) 210 540 462
(stages 1-6 )a

Thread Flops (Mflop) 11 2 78
(stage 7)

Total Flops 221 542 539

CPI time 8.5 43 22
(milliseconds)

Computational Throughput 26.0 12.5 24.9
(Gflop/sec)

a Three-dimensional grouping performs only comparisons, so does
not contribute to the flop count. For this reason the Detection
stage's flops may be considered all streaming.
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The concept of the Wilderness parameter set would be to facilitate the radar's examination of a large
area on the ground, not requiring sharp resolution, and with the expectation of few targets. The City set
would be for examining a small area on the ground, requiring sharp resolution, and would expect a large
number of targets. Note that the numbers in the above tables represent a narrowband SBR system (which
would generally be wideband, but the above would relate to one subband stream).

An interesting example morph change would be between the Wilderness and City sets. The first
thing to note about these parameter sets is the Nfam parameter, which indicates antenna area. The
Wilderness scenario, which uses half the antenna area compared to the City scenario, could conceivably
receive two data cubes while the City scenario receives one. In this manner, these two scenarios are
roughly balanced in computational throughput requirements. The balance between stage requirements has
changed though (see Figure 5 below).

Wilderness vs City stage balance (flop/scan)

350-

300- U Wilderness

S•*City
250- 

0ct

200-

06

00

S 150- ....

1004

00

Stage

Figure 5. Flop comparison between Wilderness and City scenarios.
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The most significant change between these two parameter sets is the drastic increase of the
requirements for the Estimation stage, pushing the threaded computation up to nearly fifteen percent of the
workload. Note also that the difference in the number of range gates will change either dimension or
operation frequency for every stage of computation, altering the manner in which the computational stages
may scale. The investigation of how to adjust the scales of each stage and the appropriate hardware
reconfiguration is the challenge for this morph change.
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5. CONCLUSION

In summary, we have described three significant areas where PCA might demonstrate its capacity for
improvement for a general radar: dynamic load balancing; streaming and threaded computation optimally
performed on the same hardware; and system parameter changes. We are providing these examples to the
community with the hope of getting feedback on the ways that real system designers can make use of PCA
hardware.
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